34,539 research outputs found

    Q & A Experiment to Search for Vacuum Dichroism, Pseudoscalar-Photon Interaction and Millicharged Fermions

    Get PDF
    A number of experiments are underway to detect vacuum birefringence and dichroism -- PVLAS, Q & A, and BMV. Recently, PVLAS experiment has observed optical rotation in vacuum by a magnetic field (vacuum dichroism). Theoretical interpretations of this result include a possible pseudoscalar-photon interaction and the existence of millicharged fermions. Here, we report the progress and first results of Q & A (QED [quantum electrodynamics] and Axion) experiment proposed and started in 1994. A 3.5-m high-finesse (around 30,000) Fabry-Perot prototype detector extendable to 7-m has been built and tested. We use X-pendulums and automatic control schemes developed by the gravitational-wave detection community for mirror suspension and cavity control. To polarize the vacuum, we use a 2.3-T dipole permanent magnet, with 27-mm-diameter clear borehole and 0.6-m field length,. In the experiment, the magnet is rotated at 5-10 rev/s to generate time-dependent polarization signal with twice the rotation frequency. Our ellipsometer/polarization-rotation-detection-system is formed by a pair of Glan-Taylor type polarizing prisms with extinction ratio lower than 10-8 together with a polarization modulating Faraday Cell with/without a quarter wave plate. We made an independent calibration of our apparatus by performing a measurement of gaseous Cotton-Mouton effect of nitrogen. We present our first experimental results and give a brief discussion of our experimental limit on pseudo-scalar-photon interaction and millicharged fermions.Comment: 21 pages, 13 figures, submitted to Modern Physics Letter

    Amplifying ultraweak transitions in collective systems via quantum interference

    Full text link
    We investigate laser-induced quantum interference phenomena in superradiance processes and in an ensemble of initially excited Λ−\Lambda-type closely packed three-level emitters. The lower doublet levels are pumped with a coherent laser field. Due to constructive quantum interference effects, the superradiance occurs on a much weaker atomic transition which is not the case in the absence of the coherent driving. This result may be of visible relevance for enhancing ultraweak transitions in atomic or atomic-like systems, respectively, or for high-frequency lasing effects.Comment: 12 pages, 3 figure

    Capacity analysis of reservation-based random access for broadband wireless access networks

    Get PDF
    Abstract—In this paper we propose a novel model for the capacity analysis on the reservation-based random multiple access system, which can be applied to the medium access control protocol of the emerging WiMAX technology. In such a wireless broadband access system, in order to support QoS, the channel time is divided into consecutive frames, where each frame consists of some consequent mini-slots for the transmission of requests, used for the bandwidth reservation, and consequent slots for the actual data packet transmission. Three main outcomes are obtained: first, the upper and lower bounds of the capacity are derived for the considered system. Second, we found through the mathematical analysis that the transmission rate of reservationbased multiple access protocol is maximized, when the ratio between the number of mini-slots and that of the slots per frame is equal to the reciprocal of the random multiple access algorithm’s transmission rate. Third, in the case of WiMAX networks with a large number of subscribers, our analysis takes into account both the capacity and the mean packet delay criteria and suggests to keep such a ratio constant and independent of application-level data traffic arrival rate

    An optimal gap theorem

    Get PDF
    By solving the Cauchy problem for the Hodge-Laplace heat equation for dd-closed, positive (1,1)(1, 1)-forms, we prove an optimal gap theorem for K\"ahler manifolds with nonnegative bisectional curvature which asserts that the manifold is flat if the average of the scalar curvature over balls of radius rr centered at any fixed point oo is a function of o(r−2)o(r^{-2}). Furthermore via a relative monotonicity estimate we obtain a stronger statement, namely a `positive mass' type result, asserting that if (M,g)(M, g) is not flat, then lim inf⁥r→∞r2Vo(r)∫Bo(r)S(y) dÎŒ(y)>0\liminf_{r\to \infty} \frac{r^2}{V_o(r)}\int_{B_o(r)}\mathcal{S}(y)\, d\mu(y)>0 for any o∈Mo\in M

    WLC22-4: Efficient request mechanism usage in IEEE 802.16

    Get PDF
    IEEE 802.16 protocols for metropolitan broadband wireless access systems have been standardized recently. According to the standard, a subscriber station can deliver bandwidth request messages to a base station by numerous methods. This paper provides both the simulation and analytical models for the investigation of specified random access method, which is compared with centralized polling and station- grouping mechanisms. Based on the assumptions of Bernoulli request arrival process and ideal channel conditions, the mean delay of a request transmission is evaluated for varying number of transmission opportunities and different arrival rates

    A Practical Approach for Successive Omniscience

    Full text link
    The system that we study in this paper contains a set of users that observe a discrete memoryless multiple source and communicate via noise-free channels with the aim of attaining omniscience, the state that all users recover the entire multiple source. We adopt the concept of successive omniscience (SO), i.e., letting the local omniscience in some user subset be attained before the global omniscience in the entire system, and consider the problem of how to efficiently attain omniscience in a successive manner. Based on the existing results on SO, we propose a CompSetSO algorithm for determining a complimentary set, a user subset in which the local omniscience can be attained first without increasing the sum-rate, the total number of communications, for the global omniscience. We also derive a sufficient condition for a user subset to be complimentary so that running the CompSetSO algorithm only requires a lower bound, instead of the exact value, of the minimum sum-rate for attaining global omniscience. The CompSetSO algorithm returns a complimentary user subset in polynomial time. We show by example how to recursively apply the CompSetSO algorithm so that the global omniscience can be attained by multi-stages of SO
    • 

    corecore